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ABSTRACT

A novel approach to battery lifetime prediction has been
evaluated by application to life-cycling data collected for 108
ESB EV-106 6-V. golf cart batteries (tests conducted by TRW for
NASA-Lewis). This approach utilized computerized pattern
recognition methods to examine initial cycling measurements and
classify each battery into one of two classes: "long-lived" or
"short-lived". The classifier program was based on either a

linear discriminant or nearest neighbor analysis of a training
set consisting of: each member of the EV battery set which had
failed; the relative lifetime of each member---normalized with
respect to test conditions; and a set of "features" based on
measurements of initial behavior. The raw data set included
capacity trends over the first 8 or 9 cycles and records of
specific gravity and water-added for each cell after initial
cycling. Features defined from these raw data included the
individual data items as well as transformations and combinations
of these data. All features were represented as standardized
variables. It was shown that lifetime prediction of batteries
within the two categories defined could be made with about 87%
accuracy. It is concluded that for a similarly-manufactured
battery set, relative lifetime prediction could be based on
initial measurements of the same type examined here. ___- --
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INTRODUCTION

Traditionally, battery lifetime prediction has involved the
measurement of lifetimes for a sub-set of a "uniform" population
of batteries, and then attributing the measured life
characteristics of the sub-set to the general population.
Under ideal circumstances, one could then predict the average
lifetime, and related variance, for a set of batteries, from that
same population, operated under specified conditions. It has
not generally been possible, however, to predict the lifetime of
a specific battery, relative to other batteries in the population.

For many reasons it would be desirable to predict lifetimes of
specific batteries in such a way as to discriminate in advance
between those which should be "lang-lived" or "short-lived". The
most obvious advantage would be to allow pre-selection of the
most reliable power sources for critical missions, such as space
exploration or other remote operations.

This concept of specific lifetime prediction was explored
previously by Byers and Perone ( 1 ) for sealed Ni/Cd space cells
tested at Crane Naval Weapons Support Center. The basic approach
involved the use of pattern recognition techniques to determine
if measurements of cell initial characteristics could be used to
pred ict the lifetime of specific cells relative to other cells
with Common origins operated under similar conditions. The basic
premise was that the ultimate fate of a cell is reflected in a
multi-variate examination of its initial fabrication and/or
behavioral characteristics. These measurements of initial
characteristics become the "features" or "descriptors" utilized
in pattern recognition analysis to determine if cells which are
destined to be "long-lived" can be discriminated from
those destined to be "short-lived".

The results of this initial study of pattern recognition
lifetime prediction ( 1 ) demonstrated that Ni/Cd cells from the
same production lot, with similar fabrication and operational
conditions, could be categorized from initial measurements with
virtually 100% accuracy. Combinations of as few as 1 to 3
features were required to discriminate between predicted
"short-lived" and "long-lived" cells. These features were derived
from manufacturer's pre-test data documenting behavior during
initial acceptance cycle tests. The most useful features involved
measurements of voltage or pressure changes near the end of a
charging cycle. Cluster analysis of these features suggested that
a quantitative value of relative lifetime might be assigned to a
specific cell based on the average life of its nearest neighbors
in feature space. (This last observation was very tentative
because of the small size of the individual clusters in the
limited data set.)



The results of this initial study provide several implictions:

(1) that for a new set of Ni/Cd cells fabricated identically to
the previous set it would be possible to predict lifetimes of
specific cells, relative to all other cells operated similarly,
based on pattern recognition analysis of initial cycle test data;

(2) that certain initial measurements may be more sensitive
lftime predictors, and these may be useful in identifying

critical fabrication/operational factors dictating lifetime;

() that quantitative lifetime prediction would be possible by
applying cluster analysis to a larger data set; and

(4) that imminent failure of batteries might be predicted from

monitoring of current cycle behavior.

These implications need to be evaluated in a systematic future
study. One premise of the earlier work which will be investigated
here is the general applicability of the observations with Ni/Cd
cells to other battery types. It is the primary goal of the study
reported here to evaluate this premise by applying the same
lifetime prediction techniques to a set of Lead/acid batteries.

The rationale for examining the TRW data base for life-cycling of
108 ESB EV-106 6-V. golf cart batteries (2) is as follows:

the study was well-designed and well-documented; the number
of items with common origins and test Gonditions was
sufficiently large for reliable patterni recognition studies
(which require a large ratio of patterns to features ( 3-))*.
and lead/acid batteries represent a mature technology so that
positive results could be directly useful.

One limitation of the use of the TRW data base, however, is the
fact that detailed voltage-time data were not uniformly
available. Thus, this study was limited to an examination of more
indirect evidence of battery characteristics. These included:
capacity trends over the first 8 or 9 cycles; and acceptance test
measurements of specific gravity and water addition required for
each cell.
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Description of the TRW Data Bass.

The test program undertaken by TRW ( 2 ) was designed to apply a
daily charge/discharge cycle program to 108 lead/acid 6-V.
batteries until failure. The conditions controlled included
characteristics of a chopper-controlled discharge
(frequency, duty cycle); average/peak discharge current; and depth
of discharge.

Over a 2-year life-cycling period 69 percent of the batteries
failed. Experimental correlations showed that battery cycle life
was inversely proportional to depth of discharge and discharge
current. No significant effect on lifetime was detected for
different chopper discharge frequencies and duty cycles. The
failure distribution for items with continuous (dc) discharge
current was similar to those items with chopper-controlled
discharges.

The failure mode observed involved a gradual loss o-f capacity to
the half-capacity failure point. 23 of the failed batteries were
subjected to autopsies which showed consistent evidence of cell
element aging. Every battery examined exhibited shoirt circuits
caused by metallic bridging across t-'e plates at separator edges.
Except for two early fai± .r-es, every failed item examined
exhibited buckleo aositive- plates and oxidized positive grids.
This uniformity of failure mode and physical aging characteristics
establishes a situation for pattern recognition analysis which is
much more nearly ideal than f or the earlier study with Ni/Cd cells

An Introduction to Pattern Recognition Method.

There are many useful techniques for mathematical pattern
recognition. The reader is referred to any of several useful texts
on this subject ( 4 - 9 ) for detailed discussion. A brief
introduction to the concepts will be provided here.



Mathematical pattern recognition methods take advantage of the
computer's ability to manage multi-dimensional information and
perform a series of relatively simple, but numerous, statistical
and geometrical computations. A generalized pattern recognition

procedure involves several steps. The first step involves
accumulaton of observable data (d-dimensional pattern space) from
a physical system. Because the raw data space may be of large
dimension, some reduction of dimensionality is desired to obtain
subsequent reliable classification. This step involves the
definition of r-dimensional feature space, where r < d. The
reduction of dimensionality should include identification of those
features which correlate most strongly with inter-class
information. The next step involves application of a decision
algorithm appropriate for classifying the individual sources of
information into any of Z different classes. These decisions are
applied in r-dimensional feature space.

CLASSIFICATION METHODS. Various generally-applicable mathematical
procedures for pattern classification have been developed. Two of
these appear to be particularly useful for the studies here. One
of these involves Linear Discriminant Analysis (LDA) (4,7), and
the other involves the k-Nearest Neighbor (kNN) classification
criterion (7,8).

Trainable pattern classifiers, a sub-class of learning machines

(4), are used in Linear Discriminant Analysis. The r pieces of
information (r features) describing a pattern can be plotted as a
point in r-dimensional feature space. It is assumed that patterns

with similar properties will occupy the same region of feature
space. LDA pattern classification involves finding linear
boundaries which will discriminate between these spatial regions.

A two-category pattern classifier can be defined by a discriminant
function which is a scaler, single-valued function of the pattern.
If the patterns to be classified are linearly separable, then the
discriminant function takes the form

r+1
s W=X_ .(1)

i=1 '

where x; is the ith component of a pattern having r features,
x ! equals one, w; is the weight corresponding to the ith
component, and s is the scaler result. The category in which a
given pattern is placed is determined by the sign of s.
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A set of representative patterns of known classes, the training
set, is presented sequentially to the classifier. When a pattern
is incorrectly categorized, the weights of Equation 1 are
adjusted in a manner to correct the error. If the training set is
linearly separable, this procedure will converge to a single
weight vector which can correctly classify all the patterns.
Subsequently, unknown patterns of similar origins can be
classified by the trained classifier.

The k-Nearest Neighbor classification rule simply states that an
unknown pattern is classified according to a majority vote of its
k-nearest neighbors in r-dimensional feature space.
Computationally, the Euclidian distances between the single
r-dimensional point representing the pattern in question and all
other pattern points in r-space must be calculated to find the
nearest neighbors. The distance, in r-space, between two points
i and j is:

r
D;5 - x ^2 (2)

IJkZ

L J
Because the distances are a non-linear function of the features,
the kNN method can be applied to non-linear classification
problems.

FEATURE SELECTION TECHNIQUES. Feature selection involves reducing
the dimensionality of a problem by eliminating pattern descriptors
unnecessary for classification and retaining a sub-set of pattern
descriptors (features) which are required for classification.
Statistical feature selection methods of the principal components
type work well for data sets with well-defined distribution
functions.

For non-parametric classification problems, various transform
methods have been used (10 - 13), as well as a host of other
basically empirical approaches. However, most workers agree that
only an empirical trial-and-error, all-possible-combinations
approach guarantees finding the optimum feature set. Thus, in our
work a systematic trial-and-error feature elimination procedure
was used (13), guided by visual examination of feature plots.
All-possible-combinations of small feature sets were also used.
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RESULTS AND DISCUSSION

Definition of Features and Sets for Lifetime Prediction.

LIFETIME DISTRIBUTIONS. Figure 1 shows the overall lifetime
distribution for all 108 batteries in the TRW study. (The large
block at the upper end of the distribution represents 32 batteries
unfailed at the end of the test period of 589 cycles.) One of the
most crucial steps in the examination of the life-cycling data is
the assignment of battery lifetime into various categories, such
as "short", "long", "average", or other. The approach used in the
previous study ( 1 ) involved the use of naturally-occuring
break(s) in the failure distribution(s) to define "long-lived"
and "short-lived" classes. The same approach was adopted here.

The validity of the failure distribution for lifetime
categorization depends on the uniqueness of the data sub-set
selected. The set presented in Figure 1 includes all items,
regardless of variations in test conditions, and as such is not
very useful. In this study, for example, it has been observed that
lifetime is dependent on depth of discharge (DOD) and on average
discharge current (IAV). Figure 2 illustrates the differences in
lifetime distributions for DOD = 50 and DOD = 75. (Again, the
upper block in each case represent items unfailed after 589
cycles.) Each of these distributions could be further sub-divided
into sub-sets with constant IAV. Unfortunately, these sub-set

limits would be too restrictive for analysis of the TRW data
base, because no more than 15 items could be included in a
single sub-set. Three different nominal depths of discharge were
applied---25, 50, and 75 percent; and 7 different values of IAV
were employed, varying from 20 to 260 A.

Because the reliability of pattern recognition assignments
decreases significantly when the ratio of patterns to features
drops below about 5 ( 3 ), it is desirable to utilize a larger
pattern set to allow pattern recognition in a higher dimension
feature space. The basic approach taken here to define larger
sub-sets of the test data for lifetime prediction involved,
firstly, normalizing the cycle-life characteristic with respect to
influential parameters. Secondly, the items were grouped
according to DOD in examining the failure distributions. This
allowed the identification of 3 sub-sets, corresponding to the 3
DOD values, 25, 50, and 75. Because only 27% of those in the first
sub-set had failed (8 items) by the end of the test program, that
sub-set was not useful here. The other two sub-sets had 81% and
97% failures, (39 and 29 items respectively), and were useful
sub-sets for pattern recognition.
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NORMALIZED LIFETIME DISTRIBUTIONS. Normalization of the
cycle-life characteristic was accomplished according to one of
two relationships. The first was referred to as "REGLIFE". It was
equated to the deviation of observed lifetime from the regression
fit to the expression:

FLCYNO = A + B*IAV (3)

where FLCYNO is the number of cycles to failure, and IAV is the
average discharge current. The constants, A and B, are determined
from a fit to all data where DOD is constant. Then, for each
failed battery in the DOD sub-set, the value of REGLIFE is
calculated:

REGLIFE = FLCYNO - A - B*IAV (4)

The second normalization function was based on the calculation of
a relative lifetime, referred to as "RELIF". It was equated to
the ratio of the observed lifetime for a specific battery to the
average lifetime for all other batteries where DOD and IAV are
the same.

RELIF = FLCYNO/AVG(FLCYNO) (5)

The distributions of REGLIFE and RELIF were determined for all
batteries in the two sub-sets corresponding to DOD = 50 and 75.
(For convenience, these will be referred to as the DOD50 and DOD75
sub-sets.) For the DOD50 sub-set, the maximum number of members
was 48. However, 3 batteries failed prematurely at less than 173
cycles and were eliminated arbitrarily from consideration. This
provided a useful sub-set of 45 items. 9 batteries had not failed
by the end of the test period. (6 of these 9 were tested under
the least strenuous conditions (IAV = 20 A.)). Each of these
items was assigned an arbitrary lifetime of 625 cycles, obtained
from an extrapolation of a plot of lifetimes vs. IAV. The maximum
measured lifetime was 589 cycles, after which the test was
discontinued. The median lifetime for the DOD50 sub-set of
45 items was 495 cycles.



For the D0D75 sub-set, the maximum number of members was 30.
There were no premature failures. Only one battery was unf ailed
at the end of the test period. It was assigned an extrapolated
arbitrary lifetime of 600 cycles. The median lifetime for the
30-item DOD75 sub-set was 403 cycles.

The values of the regression constants determined from the fits to
Equation 3 for the DOD50 and DOD75 sub-sets are listed in Table I.
Figures 3 and 4 present the distributions of REGLIFE and RELIF
for the DOD50 and DOD75 sub-sets of 45 and 30 items,
respectively. In contrast with Figure 2, it appears in each case
that the DOD50 and DOD75 distributions might be combined into a
single set. However, subtle differences in the DOD50 and DOD75
distributions are observed for both REGLIFE and RELIF. One of
these differences is obvious in comparing the ranges of the
distributions for the D0D50 and DOD75 sub-sets in Figures 3 and 4.
In both cases the DOD75 range is considerably broader than for the
DOD50 range. Another fundamental difference becomes clear when class
boundaries are defined by pattern recognition as discussed below.

CATEGORIZATION. Examination of Figures 3 and 4 shows that some
natural breaks appear in the normalized failure distributions.
These can be used as a first cut assignment of lifetime classes
for pattern recognition. For example, in Figures 3A and 3B it
appears that several possible "breaks" might be considered to
distinguish between "short-lived" and "long-lived" classes. The
obvious breaks in 3A occur at REGLIFE values of '(-80, -35, and
+70); those in 3B occur at REGLIFE values of ",(-150, -80, 0, and
+100). However, several other breaks appear when any regions of
the histograms are expanded.

The selection of any particular boundary for categorization
depends on two things. One of these is the purpose of the
categorization. For example, several different binary
categorizations could be considered, where the purposes might be
to identify the very best cells; the very worst cells; or to
simply distinguish between the two classes "better" and "worse".
In addition, a 3-class categorization could be considered which
included the best, worst, and middle classes. Arbitrary
boundaries can be assigned based on naturally occuring breaks
once the purpose has been defined. For example, if a simple
binary categorization of "better/worse" is desired, the first-cut
boundaries for Figures 3A and 3B might be -36 and 0. respectively.

The second criterion for selection of category boundaries is
based on the observed performance of the selected boundary for
pattern recognition classification of cells with known
performance. The selected boundaries can be further refined by
adjusting them for optimum classification accuracy from pattern
recognition examination of measurement features.
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DEFINITION OF FEATURES FOR PATTERN RECOGNITION. The features used
for pattern recognition lifetime prediction were taken from

documentation of the preliminary examination and initial
acceptance tests applied to all EV-106 batteries prior to commencing

life-cycle testing. These included measurements of the specific
gravities, battery weights, and volume of water required to
achieve uniform levels for each cell/battery as received, as well

as discharge capacity values over 8 or 9 acceptance cycles.

These initial acceptance data were used to generate pattern
features for each battery. The most useful features fell into 4
categories:

o Initial Specific Gravity

o Initial Water Volume Added

o Initial Capacity Trends

o Transformed/Combined Variables

A total of 10 features proved to be useful, and these are
summarized in Table II.

A summary of the variances of each of the pattern features for

two different sub-sets is provided in Table III. Because of the wide

disparity in values of the features, all pattern recognition studies
were conducted with standardized variables, where the standardized
.value, x(s), is defined:

x (s) = (x(i) - x(ave))/(s.d.) (6)

Thus, the ranges of all standardized variables were (+/-3).

As expected, some of the features were highly correlated. However,

as observed in previous studies ( 13 - 15 ), the use of

statistically correlated features can be justified anduseful for
pattern recognition where normal distributions are nct observed.

This is certainly the case for our data.

The selection of an optimum feature set for classification

is a crucial part of any pattern recognition study, and

the procedure used here is described below.

kU
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Data Analysis.

CLASSIFICATION PROCEDURES. Two different techniques were used for
pattern recognition lifetime prediction: Linear Discriminant
Analysis (LDA); and k-Nearest Neighbor analysis (kNN). (These
were discussed in an earlier section.) The LDA method allows
accurate classification when classes can be separated by a linear
boundary (line, plane, hyperplane) in feature space. Once a
discriminant function is found which provides accurate
classification, the application of this function to pattern
recognition is computationally simple. However, the restriction
to linearly separable classes precludes application in many cases.

The kNN method allows accurate classification as long as items
of similar class form clusters in feature space. These need not be
linearly separable for classification, as long as significantly
different spatial distributions are obtained. However, the kNN
algorithm requires much more extensive computations at the time
of classification.

For simplicity, a value of k = 1 was used for nearest neighbor
calculations. A "leave-one-out" procedure was used to evaluate
classification accuracy. That is, each item was removed from the
training set, and treated as an item of unknown class. Its class is then
assigned to be the same as its nearest neighbor. It is then returned to
the training set, and the next item is removed for classification.

An iterative feature-weighting procedure was also used in the kNN
method here. That is, feature weights were systematically varied by
multiples of 2 to obtain an optimum combination of weights for
maximum accuracy.

FEATURE PLOTS. An examination of pattern distributions in feature
space provide useful insight to the applicability of LDA or kNN

classification techniques. Figure 5 shows a feature plot of INCAP
and SGH for the DOD75 sub-set, where class assignments were based
on the optimum boundary for the REGLIFE distribution (discussd
below). In this case the two classes are linearly separated in
2-d feature space. Thus, the LDA method works very well for
classification. One possible linear boundary which would provide
accurate classification is also illustrated in Figure 5. The kNN
method does not work well for this distribution.

Figure 6 shows a weighted feature plot of INDL and MXH2 for the
DOD50 sub-set, where class assignments were based on the optimum
boundary for the REGLIFE distribution. Clearly, the long-lived
and short-lived classes exhibit different distributions, but are
not linearly separable in 2-space. When a third feature (SGH) is
added, the class distributions become separated sufficiently to
allow accurate kNN classification (see results section).
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FEATURE ELIMINATION PROCEDURFS. Two different methods were used to
obtain a minimum feature set for optimum classification. One of
these involved using all possible combinations of 1, 2, or 3
features from those defined in Table II. The other involved a
sequential elimination procedure (13).

The sequential elimination procedure involved first conducting
classification with all features used. Then one feature is removed
and classification is again conducted. If classification accuracy
is unchanged or improved, the feature is permanently eliminated.
If not it is returned to the feature set. This process continues
until a minimal feature sub-set is obtained where no further
improvement in classification accuracy is observed by elimination.
This method proved useful for minimal feature sets greater than 3.
However, the elimination sequence is too arbitrary to guarantee
identification of the optimum feature sub-set, particularly for
small sets. The all-possible-combinations approach was practical
and effective for up to 3 features.

OPTIMIZING CLASS BOUNDARIES FROM LIFETIME DISTRIPUTIONS. Although
several different category definitions were used in this study,
this report focuses on the simple binary classification issue
where batteries were simply divided into longer-lived and
shorter-lived classes. It was expected that this would lead to
some overlap in the middle, and that less than 1OO% accuracy would
be achieved. However, identification of these two classes appeared
to be a realistic goal for real applications of these methods to
battery lifetime prediction. When only high accuracy was the goal
we were able to achieve that by discriminating only the very best
or the very worst batteries from the rest.

The aethod used to identify the optimum class boundaries from
lifetime distributions involved, first, selecting
arbitrarily a naturally-occuring break in the distribution.
Pattern classification was applied to the defined classes as a
training set, and the resultant accuracy observed. The boundary
was then adjusted in either direction searching for maximum
classification accuracy.
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CLASSIFICATION RESULTS. Examination of Tables IV and V verifies
that pattern recognition provides accurate prediction of lifetime
class based on battery acceptance test data. Both the LDA and kNN
methods proved useful. The LDA method provided the most accurate
lifetime classifications for all sub-sets. For each sub-set,
overall classification accuracy of '85% was achieved. Best
results were obtained for the DOD50 sub-set, where classification
accuracy for short-lived batteries approached 100%. High accuracy
in identifying potential short-lived batteries provides a
significant incentive for practical applications of predictive
lifetime classification.

There did not appear to be any significant advantage for either of
the two lifetime normalization methods, REGLIFE or RELIF. Both
worked well. However, the RELIF distribution was the only one that
could be used for the DOD50/75 sub-set because the REGLIFE
distributions for DOD50 and DOD75 were so different.

The size of the DOD50 sub-set was varied in these studies to
examine the effects of various anomolies in the test items. These
are documented in Tables IV and V. The primary concern was how to
handle the batteries which had not failed by the end of the test.
In one case (DOD50 sub-set with 39 items, (DOD50(39)) all
batteries where IAV was 20 A. were excluded, as most of these had
not failed by the end of the test. The classification accuracy
for this sub-set was the highest of all, with short-lived
batteries being identified with 100% accuracy.

Another questionable test item was a battery (s/n = 16) in the
DOD50 sub-set which had an exceptionally low lifetime (438
cycles) for an IAV of 20 A. Because all other batteries tested
under these conditions were unfailed at the end of the test (589
cycles), this battery might be considered anomolous. By way of
confirmation, an autopsy (2a) of this battery revealed that the
negative plates were "hard and dry", a condition not found in any
of the other autopsies. Thus, this item was excluded from some of
the sub-sets examined. Also, this battery was excluded from
regression analysis of the DOD50 sub-set. Thus, the REGLIFE
distribution is based on the lifetimes of a 44-battery DOD50

sub-set.

The boundary values of REGLIFE and RELIF required for optimum
classification accuracy are listed in Tables IV and V. It is
interesting to note that for both distributions the optimum
boundary between short-lived and long-lived cells is shifted to
larger values for the DOD75 sub-set compared to the DOD50
sub-set. This results in a larger percentage of batteries being
categorized as "short-lived" in the DUD75 sub-set. This is not
inconsistent with the fact that the actual depth of discharge was
'93%, as pointed out in the TRW/NASA report ( 2 ). Moreover, for
large values of IAV, the effective depth of discharge approaches
100%. Thus, it is not surprising that the fraction of batteries
which cluster together as a short-lived group is larger for the
DUD75 sub-set. Also, the relatively poor classification accuracy
obtained when the DOD50 and DOD75 sub-sets are combined is very
likely explained by the significantly different distributions of
the two classes for the two sub-sets.
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The validity of the pattern recognition results is substantiated
by the low ratio of features to patterns required for accurate

classification in each case. The largest ratio required was for

the DOD50(39) sub-set with the LDA method (~1:8), (Table IV).
Typically, the ratio required was '1:15. In any case, the ratios

obtained were much lower than required (11:5) for credible pattern

recognition classification ( 3 ).

The most useful features for predictive lifetime classification

appeared to be SGH and INCAP, based on the high frequency of their

appearance in the minimum feature sets for accurate classification.
This observation is certainly consistent with the intuitive
perception that differences in specific gravity, water added, and
initial capacity trends should be meaningful predictors of battery
life. It is clear, however, that the relationships between
all features studied and battery lifetime are non-linear and
multivariate.

CONCLUSIONS

This study has clearly demonstrated the feasibility of predictive
lifetime classification for uniformly fabricated lead-acid

batteries. Moreover, the utility of acceptance tests documenting
trends in specific gravity, water added, and initial capacity has
been shown. The accuracy of predictive classifications is

sufficiently high, particularly for the identification of
short-lived batteries, that the practical application of this
method should be explored.

Perhaps of more importance is the fact that this type of study may
provide new insight to factors which affect battery life---as
reflected in the useful features for predictive lifetime
classification. For example, we should like to know why water-added
is a sensitive indicator. To examine such questions, we are currently
undertaking a new study documenting added water and acid content
changes (as well as other measures) during acceptance cycles in a

life-cycling experiment with lead-acid batteries.

The general applicability of the predictive features and the
classification methods studied here for lead-acid batteries of
various origins remains to be investigated. In addition, it is
desirable to examine the utility of more-detailed charge-discharge
voltage trend data for predictive lifetime classification.
Moreover, it would be desirable to examine a significantly larger
population of test articles to evaluate the feasibility of
quantitative lifetime prediction which had been suggested in

the earlier study with Ni/Cd cells( 1 ).
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TABLE I

Regression Constants for Fits to Equation 1.

TEST REGRESS ION CONSTANTS
SUB-SET A, cycles B, cycles/A.

DOD50 608.9 -0.7864

DIJD75 444.7 -0.2526

T3.21
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TABLE II

Classification Features For Each EV-106 Battery
Based on EV-106 Acceptance Tests

NAME TYPE DESCRIPTION

SPECIFIC GRAVITY

AVSG AVERAGE SPECIFIC GRAVITY 3 CELLS

WATER VOLUME ADDED

MXH VOLUME FOR CELL REQIRING MOST WATER

INITIAL CAPACITY TRENDS

INCAP AVERAGE CAPACITY OF ACCEPTANCE CYCLES

MXCP MAXIMUM CAPACITY FROM ACCEPTANCE CYCLES

MNCP MINIMUM CAPACITY FROM ACCEPTANCE CYCLES

TRANSFORMED VARIABLES

AVSG2 (AVSG)2

MXH2 (MXH)2

SGH AVSG*MXH

DLCP MXCP - MNCP

INDL INCAP/DLCP

T3. 19
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TABLE I II.
Feature Values for Two Sub-sets.

DOD50 (45) DOD75(30 )

FEATURE AVG. S.D. AVG. S.D.

AVSG 1.278 0.006 1.278 0. 004

AVSG2 1.633 0.014 1.634 0.010

MXHml. 91.8 38.7 91.7 36.4

MXH2,m12  9888 7728 9682 7031

SGHml. 11.7xc104  4.2x 104 11.7x10' 4.6x10"

INCAPA.h. 106.9 1.5 107.2 1.1

MXCPIA.h. 114.2 2.1 113.7 2.,2

MNCPA.h. 103.8 2.1 104.3 1.1

DLCPA.h. 10.4 2.3 9.5 2.2

INDL 10.8 2.4 11.9 2.5

------
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TABLE IV. SUMMARY OF CLASSIFICATION RESULTS NITH LINEM DISCRININANT ANALYSIS
(Long-lived batteries a class 1; short-lived a class 2)

DATA ASE SUB-SET

CLASS
NO. DISTRIBUTION CLASSIFICATION FEATURES CLASSIFICATION RESULTS

DOD ITEMS (1)/(2) CRITERION/DOUNDMRY REQUIRED % CORRECT %(2) %(1)

50 39(a) 29/10 RELIF/(0.909) (5) AVS62, Nfl42, SON, 87.2 100 82.8
INDL, I1CAP

50 45 38/7 RELIF/(O.877) (4) HNN2, SON, INDL, 85.5 84.2 85.7
INCAP

50 44(b) 32/12 REGLIFE/(-34.34) (3) SON, INDL, INCAP 81.0 92.0 78.0
A606.9

B-0. 7864

75 30 16/14 RELIF/(0.977) (2) SON, INCAP 83.3 85.7 81.2

75 30 16/14 RE6LIFE/-15.04) (2) S6H, INCAP 83.3 85.7 81.2

50/75 69(a) 57/12 RELIF/(0.878) (4) IHH2, INDL, 81.2 75.0 62.5
DLCP, INCAP

-- ------------------------------------------------------------------------------------------------------

ia) Features of batteries with lA a 20 resoved fro data base. (All but one unfailed at end of test.)
(b) One battery (s/n a 16) removed from data base because of anomolously loo life for IAY x 20.

10.15

__.A
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TALE V. SUNAY OF CLASSIFICATION RESULTS MITH K-NEAREST NEIBM ANALYSIS
(Long-lived batteries a class 1; uhort-lived a class 2)

DATA BASE SUB-SET

CLASS
No. D1STRIBUTION CLASSIFICATION- FEATURES CLASSIFICATION RESULTS

DOD ITENS (1)(2 CRITERION/BOUNDARY REQUIRED Z CORRECT %(2) %M1

50 39Wa 29/10 RELIF/(.909) (3) AYS02, MN2, DLCP 87.2 70.0 93.1

50 45 32/13 REGLIFEM-34.34) (3) MN2, SGH, INDK 84.4 84.6 84.4

B.-0. 7864

75 30 17/13 RELIF/M.53) (2) SON, DLCP or 66.7 69.2 64.7
MNH, DLCP

75 30 19/12 REGLIFE/(-22.2) (2) SON, INDK or 76.7 66.7 83.3
As444.7 HN2, INKL
3.-0. 2526

50/75 69(4) 57/12 RELIFI(0.8) (4) AYSG2, NIH2, 85.5 50.0 93.0
SON, INCAP

(a) Features of batteries with [AV a 20 removed from data base.
(All but one (sin % 16) were unf ailed at end of test.)

10. ML
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LIST OF FIGURES

Figure 1. Lifetime Distribution for All 108 Batteries. Large block
at upper end represents 32 unfailed batteries after 589
cycles.

Figure 2. Lifetime Distributions for the DOD = 50 Sub-set of 48
items; and the DOD = 75 Sub-set of 30 items. Blocks at upper
ends represent unfailed batteries after 589 cycles.

Figure 3. Lifetime Distributions Based on REGLIFE Normalization
Function. A. For DOD = 50 sub-set of 45 items, with 3

premature failures excluded. B. For DOD = 75 sub-set of
30 items.

Figure 4. Lifetime Distributions Based on RELIF Normalization
Function. A. For DOD = 50 sub-set of 45 items, with 3
premature failures excluded. B. For DOD = 75 sub-set of
30 items.

Figure 5. Feature Plot for DOD = 75 Sub-set of 30 Items. Lifetime
class assignments based on optimum boundary from REGLIFE
distribution (see Table IV).

Figure 6. Weighted Feature Plot for DOD = 50 Sub-set of 45 items.
Lifetime class assignments based on optimum boundary
from REGLIFE distribution (see Table V).
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